
CS 152: Computer Systems Architecture

GPU Computing Introduction

Sang-Woo Jun

2023

The State of Computation

Lynn Freeny, Department of Energy

Department of Energy requested exaflop machines by 2020

1,000,000,000,000,000,000 floating point operations per second

Using 2016 technology, 200 MW

MIT Research nuclear reactor

6 MW

Average residential power consumption of San Francisco

178 MW

(Calculated from “Electricity Consumption by County”, California energy commission)

Using 2019 technology, 60 MW
Using 2022 technology, 20 MW

Heavy use of GPUs – Not bound to conventional threaded programming

Image: TheNextPlatform

Graphic Processing – Some History

❑ 1990s: Real-time 3D rendering for video games were becoming common
o Doom, Quake, Descent, … (Nostalgia!)

❑ 3D graphics processing is immensely computation-intensive

Texture mapping
Warren Moore, “Textures and Samplers in Metal,” Metal by Example, 2014

Shading

Gray Olsen, “CSE 470 Assignment 3 Part 2 - Gourad/Phong Shading,” grayolsen.com, 2018

Graphic Processing – Some History

❑ Before 3D accelerators (GPUs) were common

❑ CPUs had to do all graphics computation, while maintaining framerate!
o Many tricks were played

Doom (1993) : “Affine texture mapping”
• Linearly maps textures to screen location,

disregarding depth
• Doom levels did not have slanted walls or ramps,

to hide this

Graphic Processing – Some History

❑ Before 3D accelerators (GPUs) were common

❑ CPUs had to do all graphics computation, while maintaining framerate!
o Many tricks were played

Quake III arena (1999) : “Fast inverse square root”
magic!

Introduction of 3D Accelerator Cards

❑ Much of 3D processing is short algorithms repeated on a lot of data
o pixels, polygons, textures, …

❑ Dedicated accelerators with simple, massively parallel computation

A Diamond Monster 3D, using the Voodoo chipset (1997)
(Konstantin Lanzet, Wikipedia)

Example: OpenGL Shader Language (“GLSL”)
Program a function,
function runs for every single pixel on screen

Source: Tom’s Hardware, 1997

NVIDIA Ampere-Based GA100 Architecture (2020)

Many many cores,
not a lot of cache/control

Peak Performance vs. CPU

Throughput Power Throughput/Power

Intel Skylake 128 SP GFLOPS/4 Cores 100+ Watts ~1 GFLOPS/Watt

NVIDIA V100 15 TFLOPS 200+ Watts ~75 GFLOPS/Watt

Also,

System Architecture Snapshot With a GPU

CPU

GPU
GPU Memory

(GDDR6,
HBM2,…)

Host Memory
(DDR4,…)

Platform
Controller Hub

(PCH)

NVMe

Network
Interface

…

QPI/UPI
12.8 GB/s (QPI)
20.8 GB/s (UPI)

PCIe
16-lane PCIe Gen3: 16 GB/s
16-land PCIe Gen4: 32 GB/s

DDR4 2666 MHz
128 GB/s
100s of GB

GDDR5: 100s GB/s, 10s of GB
HBM2: ~1 TB/s, 10s of GB

Lots of moving parts!

Massively Parallel Architecture For
Massively Parallel Workloads!

❑ NVIDIA CUDA (Compute Uniform Device Architecture) – 2007
o A way to run custom programs on the massively parallel architecture!

❑ OpenCL specification released – 2008

❑ Both platforms expose synchronous execution of a massive number of
threads

CPU

GPU

Thread

…

GPU Threads

Copy over PCIe Copy over PCIe
Automatic memory transfer features exist!
(e.g., cudaMallocManaged, zero copy, …)
Emphasis (typically) more on programmability than performance

High-Performance Graphics Memory

❑ Modern GPUs even employing 3D-stacked memory via silicon interposer
o Very wide bus, very high bandwidth to feed many, many cores

o e.g., HBM2 in Volta, Ampere

Graphics Card Hub, “GDDR5 vs GDDR5X vs HBM vs HBM2 vs GDDR6 Memory Comparison,” 2019

The Hardware Lottery
Sarah Hooker

Communications of The ACM, 2021

Hardware Lottery Winners:
General-Purpose CPU Threads

❑ Moore’s Law + Dennard Scaling = Dependable performance scaling

❑ Faster general-purpose hardware available next year
o Why risk uncertain reward with specialized designs?!

❑ Resources focused on making general purpose CPUs faster

Hardware Lottery Winners:
General-Purpose CPU Threads

❑ Von-Neumann general-purpose CPUs
o Not very good with parallel execution

o Not much emphasis on memory bandwidth

❑ Efficient with branch-heavy expert systems
o Favors symbolic approaches to AI (LISP, Prolog)

❑ Inefficient with massively parallel matrix multiplication
o Disfavors neural networks

Hardware Lottery Losers:
Neural Nets and the AI Winter

❑ “The lost decades”, or the “AI Winter”
o Research predominantly focused on symbolic approaches

o Insufficient hardware capacity to train realistic neural nets

❑ NN theory was already available
o Backpropagation (1963, reinvented in 1976, and again in 1988)

o Deep convolutional neural networks (1979, paired with backpropagation in 1989)

o Need for parallel architectures and memory already noticed in 1980

❑ But… already lost the hardware lottery

Hardware Lottery Losers:
Neural Nets and the AI Winter

❑ Ventures into specialized hardware for NN existed
o e.g., “Connection Machine” (pictured), 1985

❑ But none reached critical mass
o Fractured ISA, programming model

o No application -> No customers -> No research ->
No application…

New Hardware Lottery Winners:
GPUs

❑ A “fluke” in the 2000s enabled neural networks
o GPUs originally designed for gaming

o Massively parallel, a program for each pixel (for example)

o Re-purposed for training!

A Diamond Monster 3D, using the Voodoo chipset (1997)
(Konstantin Lanzet, Wikipedia)

CNNs and GPUs – Perfect Match

❑ Two papers using CNNs to identifying cats

❑ “Building High-Level Features Using Large Scale Unsupervised Learning”
o 16,000 CPU cores

o 2012

❑ “Deep learning with COTS HPC systems”
o Two CPU cores and two GPUs

o 2013

What other ideas are we missing due to the hardware lottery?

Yet Another Lottery Winners:
Specialized Hardware

❑ CNNs have reached critical mass, won the hardware lottery (finally)
o Hardware is optimizing for CNNs

o Tensor cores in GPUs, bfloat units in CPUs, TPUs, …

o Quantized arithmetic, unstructured pruning, etc making way into hardware

❑ Specialized hardware enables ever-larger models
o The baseline models are becoming very deep, very large

Yet Another Lottery Losers:
Non-CNN Models

❑ But, other ideas have lost the lottery
o If an alternative algorithm is as complex as CNNs but not trainable with TPUs

o Not feasible to train!

o Imagine training a modern NN without GPUs

❑ Example: “Capsule Networks” (2019)
o “include novel components like squashing operations and routing by agreement.”

o “aimed to solve for key deficiencies in convolutional neural networks (lack of
rotational invariance and spatial hierarchy understanding)”

o “but strayed from the typical architecture of neural networks as a sequence of
matrix multiplies.”

Yet Another Lottery Losers:
Non-CNN Models

❑ Are capsule nets the future? Maybe, maybe not!

❑ But, researchers will gravitate towards models/algorithms well-suited for
GPU/TPU/Matrix multiply.
o And away from those unsupported

❑ What great ideas are we missing because they lost the hardware lottery?

Back to CUDA…

CPU
Thread

Memory

GPU Thread

Memory

GPU Thread

GPU Thread

GPU Thread

GPU Thread

What is the programming interface? 1000 programs for 1000 threads?

GPU programming abstraction

❑ “SIMT” (Single Instruction Multiple Threads), introduced by NVIDIA
o Simply put: Identical program (“Kernel”) executed on multiple threads

o Thread ID is given as a parameter to the program,
so each thread can perform different work despite identical code

o Another kernel parameter is “block size”, the number of threads to use

for (ii = 0; ii < cnt; ++ii) {
C[ii] = A[ii] + B[ii];
}

__global__ void KernelFunction(…) {
int tid = threadIdx.x;
int blocksize = ceiling(cnt/blockDim.x);
for (i = 0; i < blocksize; ++i) {

int ii = blocksize*tid+i;
if (ii < cnt) C[ii] = A[ii] + B[ii];

}
}

CPU Code example GPU Code example

Thread dimensions given as part of request from host software

CUDA Execution Abstraction

❑ Block: Multi-dimensional array of threads
o 1D, 2D, or 3D

o Threads in a block can synchronize among themselves

o Threads in a block can access shared memory

o CUDA (Thread, Block) ~= OpenCL (Work item, Work group)

❑ Grid: Multi-dimensional array of blocks
o 1D or 2D

o Blocks in a grid can run in parallel, or sequentially

❑ Kernel execution issued in grid units

❑ No/Limited recursion (statically limited recursion depth, at all)

Simple CUDA Example

Asynchronous call

NVCC
Compiler

Host Compiler

Device
Compiler

CPU+GPU
Software

C/C++
+ CUDA

Code

CPU side GPU side

Simple CUDA Example

1 block
N threads per block

Which of N threads am I?
See also: blockIdx

__global__:
In GPU, called from host/GPU

__device__:
In GPU, called from GPU

__host__:
In host, called from host

N instances of VecAdd spawned in GPU

Should wait for kernel to finish

One function can
be both

Only void allowed

End-to-End Example: SAXPY

❑ “Single-precision A*X Plus Y” X Y

BlockDim.x

End-to-End Example: SAXPY

…

Host Memory

Device Memory

Copy to Device

Call Kernel

Copy Result

% nvcc -o saxpy saxpy.cu

% ./saxpy

Great! Now we know how to use GPUs
Bye?

Matrix Multiplication
Performance Engineering

Results from NVIDIA P100

Coleman et. al., “Efficient CUDA,” 2017 Architecture knowledge is needed (again)

No faster than CPU

NVIDIA Ampere-Based GA100 Architecture (2020)

Single Streaming Multiprocessor (SM) has
64 INT32 cores, 64 FP32 cores, 32 FP64 cores

(+4 Tensor cores…)

GA100 has 108 SMs

Ampere Execution Architecture

❑ 64 INT32, 64 FP32, 32 FP64, 4 Tensor Cores
o Specialization to make use of chip space…?

❑ Not much on-chip memory per thread
o 164 KB Shared memory

o 256 Registers

❑ Hard limit on compute management
o 32 blocks AND 2048 threads AND 1024 threads/block

o e.g., 2 blocks with 1024 threads, or 4 blocks with 512
threads

o Enough registers/shared memory for all threads must be
available (all context is resident during execution)

More threads than cores – Threads interleaved to hide memory latency

Resource Balancing Details

❑ How many threads in a block?

❑ Too small: 4x4 window == 16 threads
o 128 blocks to fill 2048 thread/SM
o SM only supports 32 blocks -> only 512 threads used

• SM has only 64 cores… does it matter? Sometimes!

❑ Too large: 32x48 window == 1536 threads
o Threads do not fit in a block!
o Runtime error: “invalid configuration argument”

❑ Too large: 1024 threads using more than 256 Byte registers

❑ Limitations vary across platforms (Fermi, Pascal, Volta, Ampere, …)

CS 152: Computer Systems Architecture

GPU Architecture And Performance

Sang-Woo Jun

GPU Processor Architecture

❑ GPUs have thousands of threads running concurrently at GHzs

❑ Much simpler processor architecture
o Dozens of threads scheduled together in a SIMD fashion

o Much simpler microarchitecture (doesn’t need to boot Linux, no VM, etc)

❑ Much higher power budget
o CPUs try to maintain 100 W power budget (Pentium 4 till now)

o Thermal design power (TDP) for modern GPUs around 300 W
• TDP: Safe level of power consumption for effective cooling

CPU (i7) adding 1 Billion floats: 2.14s, NVIDIA Turing with only one thread: 29.16s

GPU Processor Architecture

❑ Cores are organized into units of “warps”
o Threads in a warp share the same Fetch and decode units

o Drastically reduces chip resource usage
• One reason why GPUs can fit so many cores

o Basically a warp is one thread with SIMD operations
• But exposes multithread abstraction to the programmer

o Typically 32 threads per warp for NVIDIA, but may change
• Warp size information is not part of programming abstraction

Source: Tor Aamodt

miss?

Threaded abstraction is (probably) more
convenient than pure SIMD

❑ How do we program control divergence?
o e.g., “multiply 2 to cells 0 to 7, multiply 3 to cells 8 to 15”

❑ SIMD: (assuming 16-way SIMD)
o set mask for lower 8 cells, do mult 2, set mask for upper 8 cells, do mult 3

❑ SIMT: (Warp size not part of programming model)
o if (tid < 8) mult 3; else mult 3

o Feels more natural!

GPU Processor Architecture

❑ Each warp hardware can handle many sets of threads
o Why? Each warp hardware can run only one warp at a time?

o Context switch in case of memory access request, to hide
memory access latency

❑ A large block of threads can map across many
streaming multiprocessors
o Thread 0 to 31 map to warp 0,

Thread 32 to 63 map to warp 1, …
miss?

Thread Synchronization in CUDA

❑ Synchronization is possible within a block
o __syncthreads() is a barrier operation

❑ Synchronization is unnecessary within a warp
o SIMD anyways

❑ Synchronization is not (easily) available between blocks
o __syncthreads() does nothing

o No shared memory

o We can implement synchronization using slow global memory…

So far, typical parallel, multithreaded programming

But, caveats for performance engineering starts here!

Warp Scheduling Caveats

❑ Remember: Threads within a block share the same fetch, decode units
o All threads in a warp are always executing the same instruction

o What if their execution diverges?
• e.g., if (tid%2) func1(), else func2()

• e.g., if (A[tid] < 100) X++, else Y++

❑ Divergence across warps don’t matter
o Different warps, different fetch+decode

❑ What about intra-warp divergence?

Warp Scheduling Caveats

❑ Intra-warp execution divergence incurs “control divergence”
o The warp processor must execute both paths, one after another

• Whole warp will execute one direction first with some threads suspended, and the other
direction with the other threads suspended

o If 32 threads go down 32 different branches, no performance gain with SIMD!

2018, “Using CUDA Warp-Level Primitives,” NVIDIA

GPU Memory Architecture

❑ Not much on-chip memory per thread
o 256 Registers per FP32 core

o 164 KB Shared memory

❑ Relatively fast off-chip “global” memory
o But not fast enough!

o GDDR6 or HBM2 can deliver up to +1TB/s

o Shared across 2048+ threads…

❑ Pretty much no memory consistency
between blocks
o Once data goes to off-chip main memory,

explicit synchronization critical!
• Expensive!

Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”

GPU On-Chip Shared Memory

❑ Remember: A block can have thousands of threads
o They can all be accessing shared memory at once

o Shared memory hardware can’t have a port for each thread

o Serializing memory access will kill performance
• Performance will be limited by one shared memory access per thread per cycle

❑ Organized into banks to distribute access
o Best performance if all threads in warp access different banks

o Best performance if all threads access the same address (broadcast)

o Otherwise, bank conflicts drastically reduce performance

8-way bank conflict
1/8 memory bandwidth

Prominent Performance Engineering Topics

❑ Warp level execution
o Avoid branch divergence within nearby threads

o Algorithmic solutions for warp-size oblivious computations often possible

❑ Shared memory bank conflict
o Map data access per thread to interleaved addresses

❑ Synchronization overhead
o Avoid __syncthreads whenever possible (e.g., Within warp)

o Avoid inter-block synchronization

❑ Memory reuse
o Cache-optimized algorithms

CS 250P: Computer Systems Architecture
GPU Application Examples

Sang-Woo Jun

Application 1: Matrix Multiplication

❑ Dividing Matrix Multiplication into blocks of threads
o Simple solution: each thread responsible for one element

o Remember: 1024 threads maximum per block

o Spawn as many blocks as needed to cover C

❑ Shared memory is used to do some caching
o Good enough? A

B

C

2D Block

Thread

A Naïve Matrix Multiplication Kernel

__global__ void MatrixMult0(float* a, float* b, float* c, int N) {

int Row = blockIdx.y*blockDim.y+threadIdx.y;

int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < N) && (Col < N)) {

for (int k = 0; k < N; ++k) {

c[Row*N+Col] += a[Row*N+k]*b[k*N+Col];

}

}

}

MatrixMult0<<<dim3(N/BW,N/BW,1),dim3(BW,BW,1)>>>(d_a,d_b,d_c,N);

Width of a 2D square block of threads

Max threads per block: 1024
Max BW: 32

Performance So Far

❑ 16,384 x 16,384 Matrix

❑ NVIDIA RTX 2080 ti

❑ Naïve implementation
o Elapsed: 16.865s

o GFLOPS: 521

(Peak GFLOPS: 13500)

16K * 16K *16K * 4B / 616GB/s ~= 26s
… Some caching!

A Naïve Matrix Multiplication Kernel

__global__ void MatrixMult0(float* a, float* b, float* c, int N) {

int Row = blockIdx.y*blockDim.y+threadIdx.y;

int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < N) && (Col < N)) {

for (int k = 0; k < N; ++k) {

c[Row*N+Col] += a[Row*N+k]*b[k*N+Col];

}

}

}

Is this reused?

Attempt 2: Local Variable For Reuse

__global__ void MatrixMult1(float* a, float* b, float* c, int N) {

int Row = blockIdx.y*blockDim.y+threadIdx.y;

int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < N) && (Col < N)) {

float Pvalue = 0;

for (int k = 0; k < N; ++k) {

Pvalue += a[Row*N+k]*b[k*N+Col];

}

c[Row*N+Col] = Pvalue;

}

}

Local variable for reuse

Performance So Far

❑ 16,384 x 16,384 Matrix

❑ NVIDIA RTX 2080 ti

❑ Naïve implementation
o Elapsed: 16.865s

o GFLOPS: 521

❑ Local reuse 1
o Elapsed: 5.08

o GFLOPS: 1728

(Peak GFLOPS: 13500)

A

B

C
Thread1

Thread 2

Is this reused?

Attempt 3: Shared Memory

❑ Explicitly manage caches using __shared__

❑ Calculate result by adding N/BW sub-sums

❑ Sub-blocks will be used by all threads before discarded

A

B

C

…

…

Reuse!

Multithreaded Load To Shared Memory

Load Use

Source: NVIDIA, UIUC GPU Teaching Kit

Attempt 3: Shared Memory

__global__ void MatrixMult2(float* a, float* b, float* c, int N) {

__shared__ float ds_a[BLOCK_WIDTH][BLOCK_WIDTH];

__shared__ float ds_b[BLOCK_WIDTH][BLOCK_WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;

int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;

int Col = bx * blockDim.x + tx;

float Pvalue = 0;

for (int p = 0; p < N/BLOCK_WIDTH; ++p) {

ds_a[ty][tx] = a[Row*N + p*BLOCK_WIDTH+tx];

ds_b[ty][tx] = b[(p*BLOCK_WIDTH+ty)*N + Col];

__syncthreads();

for (int i = 0; i < BLOCK_WIDTH; ++i)Pvalue += ds_a[ty][i] * ds_b[i][tx];

__syncthreads();

}

c[Row*N+Col] = Pvalue;

}

Wait until load is done for all threads

Wait until computation is done for all threads

Performance So Far

❑ 16,384 x 16,384 Matrix

❑ NVIDIA RTX 2080 ti

❑ Naïve implementation
o Elapsed: 16.865s, GFLOPS: 521

❑ Local reuse 1
o Elapsed: 5.08s, GFLOPS: 1728

❑ Shared memory
o Elapsed: 3.94s, GFLOPS: 2229

(Peak GFLOPS: 13500)

How can we do better?

❑ Processing is pretty well-optimized already
o No intra-warp control divergence

o Enough threads, blocks spawned to keep threads busy

❑ Most likely memory issue!
o Remember, global memory is slow (relative to thread count)

o Operational intensity is important
• How many FLOPS do we do, per byte of memory access?

Block Size Considerations

❑ More re-use with larger blocks!

❑ With 16x16 blocks (256 threads)
o 512 word loads from memory

o 256 * (2*16) = 8,192 FLOPs

o 16 FLOP per load

❑ With 32x32 blocks (1024 threads)
o 1024 word loads from memory

o 1024 * (2*32) = 65,536 FLOPs

o 32 FLOP per load

Unfortunately, threads per block limited to 1024

Remainder left for individual interest

Application 2: Parallel Reduction

❑ Combines an array of elements and produces a single result
o E.g., adding all values in an array, finding maximum, calculating average, …

❑ If the operation is associative, i.e., (A+B)+C == A+(B+C), calculation can be
parallelized

Source: Mark Harris, “Optimizing Parallel Reduction in CUDA,” NVIDIA Developer Technology, 2007

How To Best Allocate Work To Threads?

❑ Straightforward method: divide blocks of work across threads

❑ Will this be efficient?
o Warp affinity of algorithm

o Good data access patterns, etc?

❑ How many threads should we spawn?
o As many threads as cores: Too little threads… Main memory latency not hidden! 

o Too many threads: Is there any downsides to this?

Thread 0 Thread 1

Method 0: Consecutive work blocks

❑ Each kernel run will reduce data size to blocks*threads
o Must run iteratively until reduced to 1

o How many threads, how many blocks? Too small: too many iterations!

o Let’s fix threads per block to 1024 (max for this architecture)

❑ Peak performance when ~64 elements per thread
o ~40ms for 230 elements

o Is this good?

Our Goal: Memory Saturation

❑ Reduction is an O(N) problem, ideally reading each element exactly once

❑ Not much computation per memory, so likely memory bound
o RTX 2080 ti’s GDDR6 memory has peak bandwidth of 616 GB/s

o We want to reach this utilization

o E.g., 230 elements = 4 GB, ideally 6 ms

❑ Let’s follow the guidelines in NVIDIA’s “Optimizing Parallel Reduction in
CUDA,” NVIDIA Developer Technology, 2007

❑ Each block of 1024 threads reducing 1024 elements to 1
o Use shared memory!

❑ 47 ms, 91 GB/s

Method 1: Interleaved Addressing

❑ Each block of 1024 threads reducing 1024 elements to 1
o Use shared memory!

❑ 47 ms, 91 GB/s Where are all the odd threads?

Method 1b: Better Thread Allocation

❑ More threads are doing work!

❑ 33.41 ms, 128 GB/s Assuming four banks, many bank conflicts!

Method 2: Sequential Addressing

❑ Change thread mapping to group to lower elements

❑ Consecutive addresses have no bank conflict

❑ 29.76 ms, 144 GB/s
For N threads, N/2 threads are never used!

Method 3: More Work per Thread

❑ Instead of 1024 elements per 1024 threads, 2048 elements!

❑ 15.36 ms, 280 GB/s

❑ Q1: What if we use the same method for all previous attempts?
o Interleaved: 47 ms -> 24.35 s, Better thread: 33.41 -> 17.35 ms

❑ Q2: Can we take this further? More work per thread?

Method 4: Back To Work Blocks Per Thread

❑ But this time, use method 2 to reduce within a block
o Lots of work per thread,

o Small result set per iteration

o Best of both worlds?

❑ How many blocks?
o 8,192 blocks: 40 ms

o 32,768 blocks: 28.50 ms

o 131,072 blocks: 8.52 ms! 504 GB/s!

o 524,288 blocks: 17.96 ms…

Method 4: Why?

❑ Most likely, random access issue in DRAM
o Many threads scheduled potentially out of order causes random access

o DRAM isn’t really random access!

o We will get into details later

o Bottom line: Consecutive access is faster when within same page, of multiple KBs

❑ Analyzing performance
o 131,072 blocks -> 32 KB working set within fast random access range

• Each block is scheduled sequentially. No interleaving between blocks on same SM!

o Less blocks -> Larger working set per block -> Random access penalty

o More blocks -> Smaller work per thread -> Performance penalty

Method 5: Consecutive Memory Access

❑ Set stride to total number of threads in grid
o Consecutive threads access consecutive addresses

o At least, threads in a warp always access contiguous addresses at once

❑ Reliably high performance!
o 256 blocks: 9.83 ms

o 1024 blocks: 8.3 ms

o 8192 blocks: 7.8 ms, 550 GB/s

o 65,536 blocks: 7.9 ms

o 262,144 blocks: 11.52 ms

Some More Approaches?

❑ The NVIDIA guide suggests loop unrolling when active threads become
less than 32
o Within a warp, no __synchthreads needed!

o Adding an if statement to __syncthreads also adds overhead

❑ On modern chips, this changes measures pretty negligible, so omitted

❑ 616 GB/s is ~150 GOPS…
o Remember peak computation is 13,500 GFLOPS

o Very much bandwidth bound!

Application 3: Option Pricing

❑ Options in Computational Finance:
o In finance, a contract giving the buyer of an asset the right (but not the obligation)

to buy or sell and underlying asset at a specified price or date.

o Question: How much should I pay for a particular option?

Option Pricing

Black-Scholes Equation

Geometric Brownian Motion in Finance

Random variable

“Monte Carlo Method”
Simulate massive amount of instances
and average return

What we want

Option Pricing

❑ No memory usage
o Not even shared memory

o Completely computation bound

❑ 537x Performance vs. 1 Thread

❑ Assuming GTX 1080
o 2560 CUDA cores

o Close to linear scaling

Cho et. al., “Monte Carlo Method in CUDA,” 2016

Questions?

	Slide 1: CS 152: Computer Systems Architecture GPU Computing Introduction
	Slide 2: The State of Computation
	Slide 3: Graphic Processing – Some History
	Slide 4: Graphic Processing – Some History
	Slide 5: Graphic Processing – Some History
	Slide 6: Introduction of 3D Accelerator Cards
	Slide 7
	Slide 8: Peak Performance vs. CPU
	Slide 9: System Architecture Snapshot With a GPU
	Slide 10: Massively Parallel Architecture For Massively Parallel Workloads!
	Slide 11: High-Performance Graphics Memory
	Slide 12: The Hardware Lottery Sarah Hooker Communications of The ACM, 2021
	Slide 13: Hardware Lottery Winners: General-Purpose CPU Threads
	Slide 14: Hardware Lottery Winners: General-Purpose CPU Threads
	Slide 15: Hardware Lottery Losers: Neural Nets and the AI Winter
	Slide 16: Hardware Lottery Losers: Neural Nets and the AI Winter
	Slide 17: New Hardware Lottery Winners: GPUs
	Slide 18: CNNs and GPUs – Perfect Match
	Slide 19: Yet Another Lottery Winners: Specialized Hardware
	Slide 20: Yet Another Lottery Losers: Non-CNN Models
	Slide 21: Yet Another Lottery Losers: Non-CNN Models
	Slide 22: Back to CUDA…
	Slide 23: GPU programming abstraction
	Slide 24: CUDA Execution Abstraction
	Slide 25: Simple CUDA Example
	Slide 26: Simple CUDA Example
	Slide 27: End-to-End Example: SAXPY
	Slide 28: End-to-End Example: SAXPY
	Slide 29: Matrix Multiplication Performance Engineering
	Slide 30
	Slide 31: Ampere Execution Architecture
	Slide 32: Resource Balancing Details
	Slide 33: CS 152: Computer Systems Architecture GPU Architecture And Performance
	Slide 34: GPU Processor Architecture
	Slide 35: GPU Processor Architecture
	Slide 36: Threaded abstraction is (probably) more convenient than pure SIMD
	Slide 37: GPU Processor Architecture
	Slide 38: Thread Synchronization in CUDA
	Slide 39: Warp Scheduling Caveats
	Slide 40: Warp Scheduling Caveats
	Slide 41: GPU Memory Architecture
	Slide 42: GPU On-Chip Shared Memory
	Slide 43: Prominent Performance Engineering Topics
	Slide 44: CS 250P: Computer Systems Architecture GPU Application Examples
	Slide 45: Application 1: Matrix Multiplication
	Slide 46: A Naïve Matrix Multiplication Kernel
	Slide 47: Performance So Far
	Slide 48: A Naïve Matrix Multiplication Kernel
	Slide 49: Attempt 2: Local Variable For Reuse
	Slide 50: Performance So Far
	Slide 51: Attempt 3: Shared Memory
	Slide 52: Multithreaded Load To Shared Memory
	Slide 53: Attempt 3: Shared Memory
	Slide 54: Performance So Far
	Slide 55: How can we do better?
	Slide 56: Block Size Considerations
	Slide 57: Remainder left for individual interest
	Slide 58: Application 2: Parallel Reduction
	Slide 59: How To Best Allocate Work To Threads?
	Slide 60: Method 0: Consecutive work blocks
	Slide 61: Our Goal: Memory Saturation
	Slide 62: Method 1: Interleaved Addressing
	Slide 63: Method 1b: Better Thread Allocation
	Slide 64: Method 2: Sequential Addressing
	Slide 65: Method 3: More Work per Thread
	Slide 66: Method 4: Back To Work Blocks Per Thread
	Slide 67: Method 4: Why?
	Slide 68: Method 5: Consecutive Memory Access
	Slide 69: Some More Approaches?
	Slide 70: Application 3: Option Pricing
	Slide 71: Option Pricing
	Slide 72: Option Pricing
	Slide 73: Questions?

